
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 57:1669–1694
Published online 7 January 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1700

A novel non-upwind, interconnected, multi-grid, overlapping
numerical procedure for problems involving fluid flow

Mohsen M. M. Abou-Ellail∗,†, Yuan Li and Timothy W. Tong

The George Washington University, 725 23rd Street, NW, Washington, DC 20052, U.S.A.

SUMMARY

A novel numerical procedure for heat, mass and momentum transfer in fluid flow is presented. The new
scheme is passed on a non-upwind, interconnected, multi-grid, overlapping (NIMO) finite-difference algo-
rithm. In 2D flows, the NIMO algorithm solves finite-difference equations for each dependent variable on
four overlapping grids. The finite-difference equations are formulated using the control-volume approach,
such that no interpolations are needed for computing the convective fluxes. For a particular dependent
variable, four fields of values are produced. The NIMO numerical procedure is tested against the exact
solution of two test problems. The first test problem is an oblique laminar 2D flow with a double step
abrupt change in a passive scalar variable for infinite Peclet number. The second test problem is a rotating
radial flow in an annular sector with a single step abrupt change in a passive scalar variable for infinite
Peclet number. The NIMO scheme produced essentially the exact solution using different uniform and
non-uniform square and rectangular grids for 45 and 30◦ angle of inclination. All other schemes were
unable to capture the exact solution, especially for the rectangular and non-uniform grids. The NIMO
scheme was also successful in predicting the exact solution for the rotating radial flow, using a uniform
cylindrical-polar coordinate grid. Copyright q 2008 John Wiley & Sons, Ltd.
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INTRODUCTION

Finite-difference numerical simulations have suffered from false diffusion, which is synonymously
referred to as numerical diffusion. This deficiency and other errors in computational fluid dynamics
(CFD) are an inevitable outcome of the different interpolation schemes used for the convective
terms. The interpolation schemes for the convective terms are classified as one-point schemes such
as first-order upwind; two-point schemes such as central differencing (CD); and hybrid scheme,
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which is a combination of CD and upwind differencing [1–4]. Higher-order schemes, such as
three-point second-order interpolation (CUI) [5], third-order quadratic interpolation for convec-
tive kinetics (QUICK [6] and QUICK 2D [7]), four-point third-order interpolation (FPTOI) and
four-point fourth-order interpolation (FPFOI) [8], offer a route to improving the accuracy of the
computations. The QUICK-2D scheme is an extension of the QUICK algorithm to enhance its
stability in elliptic fluid flow problems [7]. The QUICK-2D scheme utilizes a six-point quadratic
interpolation surface that favors the locally upstream points [7]. All of the above schemes were
unable to predict the exact profile along the y-axis the mid-plane of the first test problem of the
45◦ oblique flow with infinite Peclet number [8–10]. The above schemes produced uncertainties
ranging from false diffusion and numerical instabilities to overshooting and undershooting [8]. Song
et al. [9, 10] introduced a higher-order bounded discretization algorithm (weighted-average coeffi-
cient ensuring boundedness, WACEB) to overcome overshooting and undershooting encountered
in their previous FPTOI and FPFOI schemes [8]. Song et al. [9, 10] were able to remove the
overshooting and undershooting in their numerical results of the 45◦ oblique flow. Even the higher-
order schemes, mentioned above, were also unable to predict the infinitely steep gradient of the
scalar variable � as it abruptly changes from zero to one in the test problem [8–10]. Raithby [11]
presented a skew differencing scheme that utilizes the upstream values prevailing along the local
velocity vectors at the four faces of the 2D control volume surrounding each grid node. This skew
differencing scheme would capture most of the details of the oblique flow if the grid is aligned
along the local velocity vectors. Raithby obtained accurate results for the problem of step change
in a passive scalar using a square uniform grid of dimensions (11×11) when the flow is inclined
by a 45◦ angle [11]. In this case one of the diagonals of the control volume (CV) surrounding
each node is aligned along the uniform velocity field, while the other diagonal is perpendicular
to the flow direction. Verma and Eswaran [12] used overlapping control volumes to discretize the
physical solution domain. They obtained finite-difference equations that favor the upwind nodes
from which the incoming flow emanates [12]. Verma and Eswaran tested their scheme using a grid
of 11×11 for the step change in passive scalar in an oblique flow problem. They were unable to
capture the exact solution with a square grid for the 45◦ flow with step changes in the passive scalar
[12]. Interpolation for the convective transport is common to all of the above schemes, causing
a varying degree of errors. Moreover, most of the above schemes involve upwind differencing,
either explicitly or implicitly. However, the diffusive terms of the fluid flow governing equations
are much easier and are more accurately modeled in most numerical schemes.

SINGLE-GRID SCHEMES

Most of the published numerical procedures use a single grid. The main governing equations can
be cast in one general form, namely

�(�uk�)

�xk
− �

�xk

(
��

��

�xk

)
= S� (1)

where uk is the fluid velocity along coordinate direction xk , and � stands for any dependent
variable such as mass fraction or dimensionless temperature. As explained by Abou-Ellail et al. [1],
Equation (1) can be formally integrated over the control volume (CV) shown in Figure 1 to produce
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Figure 1. Control volume (CV) of single-grid schemes.

the following finite-difference equation:

(di+1, j +di−1, j +di, j+1+di, j−1−Sp)�i, j

=di+1, j�i+1, j +di−1, j�i−1, j +di, j+1�i, j+1+di, j−1�i, j−1

+ci−1, j�i−1/2, j −ci+1, j�i+1/2, j +ci, j−1�i, j−1/2−ci, j+1�i, j+1/2+Su (2)

where di+1, j and ci+1, j are diffusion and convection coefficients to be computed at the center
of the east face of the CV, midway between the central node (i) and east node (i+1). They are
given as

di+1, j =(A��/�x)at i+1/2, j (3)

ci+1, j =(�uA)at i+1/2, j (4)

where � is density, u is the velocity along the x-axis, A is the east face surface area, �x is the
distance between nodes i and i+1; �� is the diffusion coefficient of �, and Su and Sp are the
coefficients of the integrated source term conveniently expressed as a linear expression. Equations
similar to (3) and (4) apply to the west (i−1, j), south (i, j−1) and north (i, j+1) nodes. Unlike
the convective terms, the diffusion terms require no interpolation for intermediate values of �.
Convective terms, involving CV face values such as �i+1/2, j , require interpolation between the
neighboring grid nodes. The single-grid finite-difference equation can be expressed, for a central
nodal point P and neighboring east–west–north–south nodes (E, W, N, S), as

(aE+aW+aN+aS−Sp)�p =aE�E+aW�W+aS�S+aN�N+Su (5)
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The hybrid scheme defines the above finite-difference coefficients as follows:

aE=max[di+1, j , | 12ci+1, j |]− 1
2ci+1, j (6)

aW=max[di−1, j , | 12ci−1, j |]+ 1
2ci−1, j (7)

In the above equations, max [· · ·, · · ·] represents the maximum value of the two values inside the
bracket. Coefficients aN and aS have similar expressions in the hybrid scheme. The pure upwind
differencing scheme has slightly different expressions for the finite-difference coefficients.

NEW NUMERICAL SIMULATION STRATEGY

As mentioned above, most of the existing schemes, whether upwind or higher order, have a
certain degree of false diffusion and/or over- and undershooting. All the above schemes cannot
produce an exact numerical solution to the first test problem of a 45◦ oblique flow with step
changes in a passive scalar for square grids [8–10] and particularly for rectangular and non-
uniform grids [11]. The present simulation strategy is based on removing all the ambiguity of
interpolating for the CV face values of the scalar variable �. This is done simply by superimposing
four grids on the 2D solution domain. These grids are arranged in such a way that each grid
uses the remaining grids to obtain directly, without any interpolations, the CV face values of
the scalar variable used in computing the convective terms. The present new scheme essentially
replaces the interpolation process by finite-difference equations for the CV face values of �.
Therefore, the non-upwind, interconnected, multi-grid, overlapping (NIMO) scheme eliminates
most of the interpolation-based false diffusion that creeps into the numerical results. In addition
to handling the scalar variables, the NIMO system can store the velocity components, pressure
and its correction on same space locations. In this case, the velocity components on one grid
will still be located between the pressures, and their corrections on the neighboring grids as
preferred by the SIMPLE algorithm explained by Abou-Ellail et al. [1] and Patankar [2]. The
NIMO interconnected grids share some features with the well-known staggered-grid method [1, 2].
Both methods have displaced grids, relative to a defined main grid. However, the NIMO scheme
uses four overlapping grids for each dependent variable, while the staggered-grid method requires
only one grid per dependent variable, as explained by Abou-Ellail et al. [1] and Patankar [2].
While the NIMO scheme needs no interpolations for all dependent variables, the staggered-grid
method removes the need for interpolations only for the velocity components but not for the scalar
variables [1, 2].

NOVEL INTERCONNECTED MULTI-GRID NUMERICAL PROCEDURE

The new NIMO system is shown in Figure 2. The main grid defines the nodes where �i, j is located
in space. Three other grids are shifted in space where �x

i, j , �y
i, j and �xy

i, j are located midway
between the main-grid nodes, as shown in Figure 2. The superscripts x and y indicate shifting
of grids midway with respect to the main-grid nodes. Moreover, the superscript xy indicates that
the grid is shifted diagonally such that the shifted nodes occupy the center node between the
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Figure 2. NIMO coordinate system, defining arrow-head clusters, of nodes with same indices, but differ
in their spatial locations, in the main, x-, y- and xy-grids.

neighboring four nodes of the main grid. The four-node arrow-head clusters shown in Figure 2
are used to indicate the common indices (e.g. i, j) affiliated with �, �x , �y and �xy. The spatial
locations of �, �x , �y and �xy affiliated with cluster (i, j), in the solution domain, are (xi , y j ),
(xi +�xi/2, y j ), (xi , y j +�yi/2) and (xi +�xi/2, y j +�yi/2), respectively. This cluster technique
simplifies greatly the finite-difference equations of NIMO. It also simplifies the computer coding
of the system of equations of the NIMO scheme. The NIMO control volumes CV, CVx , CVy

and CVxy are shown in Figure 3. The main grid typical control volume CV is formed by the
four planes bisecting the distances between the neighboring nodes and the central node (i, j).
Control volumes CVx , CVy and CVxy enclose nodal variables �x

i, j , �y
i, j and �xy

i, j , respectively.
Along the x- or y-coordinate, the faces of these CVs pass by the nearest neighboring nodes
belonging to any of the four grids, as shown in Figure 3. The acting nodal and face values
used for convective fluxes of the scalar variable � pertaining to each control volume surrounding
each node are shown in Figure 3. It should be mentioned here that the control-volume approach
adopted here is similar to the finite-volume method [2]. However, in the finite-volume method, the
solution domain is discretized into node-centered finite volumes [2]. With this arrangement, the
computations of the convective fluxes pertaining to each control volume can be computed without
the need for interpolation, even when using non-uniform grids. Firstly, the main control volume
CV is considered. Equation (1) is formally integrated over the main control volume surrounding
a typical node (i, j) where volume integrals are replaced by their surface integral counterparts
performed over the four faces of the CV shown in Figure 3. The resulting finite-difference equation
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Figure 3. NIMO control volumes (CV, CVx , CVy and CVxy) surrounding the
nodes of the main, x-, y- and xy-grids.

of the main grid can be expressed as follows:

(di+1, j +di−1, j +di, j+1+di, j−1−Spi, j )�i, j

=di+1, j�i+1, j +di−1, j�i−1, j +di, j+1�i, j+1+di, j−1�i, j−1

+ci−1, j�
x
i−1, j −ci+1, j�

x
i, j +ci, j−1�

y
i, j−1−ci, j+1�

y
i, j +Sui, j (8)

The finite-difference mass continuity equation of the main-grid nodes can be expressed as follows:

ci+1, j −ci−1, j +ci, j+1−ci, j−1=0 (9)

Equation (9) indicates, as it should, that the sum of the incoming mass fluxes is equal to the sum
of the outgoing mass fluxes. Equations similar to (8) and (9) exist for control volumes CVx , CVy

and CVxy of the other three grids. The convective and diffusive fluxes (e.g. di+1, j and ci+1, j ) are
still given by Equations (3) and (4).
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Equation (8), together with similar equations for CV, CVx , CVy and CVxy, represents a closed
set of finite-difference equations for �, �x , �y and �xy, respectively. Although they represent the
same scalar variable (�), they differ in their physical locations in space. However, the solution
of these interconnected non-linear equations is not easy, at least with the traditional methods, e.g.
tri-diagonal matrix algorithm (TDMA). Even for a passive scalar, Equation (8) has extra terms that
must be included as source terms. In this case, the source terms represent passive scalar convective
fluxes from the x- and y-grids to the main grid. Therefore, Equation (9) is multiplied by �i, j and
is used to modify Equation (8). This modification is maneuvered such that the incoming fluxes of
� are added to the left-hand side, while the outgoing fluxes of � are attached to the right-hand
side of Equation (8). This modification helps stabilize the solutions obtained using TDMA as
part of a line-by-line alternating-direction algorithm (ADA). Since TDMA is very economical in
both storage and execution time demands, it has been favored over 2D-matrix-solver algorithms.
Moreover, iterating between the four grids is inevitable as the solution of each grid is strongly
dependent on the solutions of the other grids. The final NIMO finite-difference equations are given
as follows:

(di+1, j +di−1, j +di, j+1+di, j−1−Spi, j +ci+1, j +ci−1, j +ci, j+1+ci, j−1)�i, j

=di+1, j�i+1, j +di−1, j�i−1, j +di, j+1�i, j+1+di, j−1�i, j−1

+(ci−1, j�
x
i−1, j + c̃i−1, j�i, j )+(c̃i+1, j�i, j −ci+1, j�

x
i, j )

+(ci, j−1�
y
i, j−1+ c̃i, j−1�i, j )+(c̃i, j+1�i, j −ci, j+1�

y
i, j )+Sui, j (10)

The terms ĉ and c̃ are convective fluxes expressed in a general form to allow incoming fluxes
to be transferred to the left-hand side while outgoing ones appear only in the right-hand side of
Equation (10). The new convective fluxes are defined along the E–W directions as

ĉi−1, j =| 12ci−1, j |+ 1
2ci−1, j (11)

c̃i−1, j = ĉi−1, j −ci−1, j (12)

ĉi+1, j =| 12ci+1, j |− 1
2ci+1, j (13)

c̃i+1, j = ĉi+1, j +ci+1, j (14)

Similarly, along the N–S direction, ĉ and c̃ are defined as

ĉi, j−1=| 12ci, j−1|+ 1
2ci, j−1 (15)

c̃i, j−1= ĉi, j−1−ci, j−1 (16)

ĉi, j+1=| 12ci, j+1|− 1
2ci, j+1 (17)

c̃i, j+1= ĉi, j+1+ci, j+1 (18)

It can be easily shown that the sum of the four components of c̃ is equal to the sum of the four
components of ĉ; this is done by adding Equations (12), (14), (16) and (18), i.e.

c̃i−1, j + c̃i+1, j + c̃i, j−1+ c̃i, j+1 = ĉi−1, j + ĉi+1, j + ĉi, j−1+ ĉi, j+1

+[ci+1, j −ci−1, j +ci, j+1−ci, j−1] (19)
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The last bracket on the right-hand side of Equation (19) is equal to zero as given by Equation (9).
Further simplification can be achieved if the diffusion fluxes and the convective fluxes are paired,
namely,

(ai+1, j +ai−1, j +ai, j+1+ai, j−1−Spi, j )�i, j

=di+1, j�i+1, j +di−1, j�i−1, j +di, j+1�i, j+1+di, j−1�i, j−1

+(ci−1, j�
x
i−1, j + c̃i−1, j�i, j )+(c̃i+1, j�i, j −ci+1, j�

x
i, j )

+(ci, j−1�
y
i, j−1+ c̃i, j−1�i, j )+(c̃i, j+1�i, j −ci, j+1�

y
i, j )+Sui, j (20)

It should be mentioned that Equation (20) is still equivalent to Equation (10) or Equation (8). The
coefficient a on the left-hand side of Equation (20) is similar to the upwind differing coefficient,
inasmuch as they both represent the net transport by convection and diffusion. However, the

Figure 4. NIMO convective fluxes crossing the faces of CV, CVx , CVy and CVxy

control volumes of the main, x-, y- and xy-grids.
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right-hand side has a completely different structure as it accepts the outgoing fluxes. These outgoing
fluxes are reduced to zero in the pure upwind scheme. Equation (20) is found to have better
conversion characteristics than the final NIMO equation (Equation (10)). The above coefficients
are defined as

ai+1, j =di+1, j + ĉi+1, j (21)

ai−1, j =di−1, j + ĉi−1, j (22)

ai, j+1=di, j+1+ ĉi, j+1 (23)

ai, j−1=di, j−1+ ĉi, j−1 (24)

Similarly, the NIMO finite-difference equations for control volumes CVx , CVy and CVxy can be
expressed as

(axi+1, j +axi−1, j +axi, j+1+axi, j−1−Sxpi, j )�
x
i, j

=dxi+1, j�
x
i+1, j +dxi−1, j�

x
i−1, j +dxi, j+1�

x
i, j+1+dxi, j−1�

x
i, j−1

+(cxi−1, j�i, j + c̃xi−1, j�
x
i, j )+(c̃xi+1, j�

x
i, j −cxi+1, j�i+1, j )

+(cxi, j−1�
xy
i, j−1+ c̃xi, j−1�

x
i, j )+(c̃xi, j+1�

x
i, j −cxi, j+1�

xy
i, j )+Sxui, j (25)

(ayi+1, j +ayi−1, j +ayi, j+1+ayi, j−1−Sypi, j )�
y
i, j

=dy
i+1, j�

y
i+1, j +dy

i−1, j�
y
i−1, j +dy

i, j+1�
y
i, j+1+dy

i, j−1�
y
i, j−1

+(cyi−1, j�
xy
i−1, j + c̃yi−1, j�

y
i, j )+(c̃yi+1, j�

y
i, j −cyi+1, j�

xy
i, j )

+(cyi, j−1�i, j + c̃yi, j−1�
y
i, j )+(c̃yi, j+1�

y
i, j −cyi, j+1�i, j+1)+Syui, j (26)

(axyi+1, j +axyi−1, j +axyi, j+1+axyi, j−1−Sxypi, j )�
xy
i, j

=dxyi+1, j�
xy
i+1, j +dxyi−1, j�

xy
i−1, j +dxyi, j+1�

xy
i, j+1+dxyi, j−1�

xy
i, j−1

+(cxyi−1, j�
y
i, j + c̃xyi−1, j�

xy
i, j )+(c̃xyi+1, j�

xy
i, j −cxyi+1, j�

y
i+1, j )

+(cxyi, j−1�
x
i, j + c̃xyi, j−1�

xy
i, j )+(c̃xyi, j+1�

xy
i, j −cxyi, j+1�

x
i, j+1)+Sxyui, j (27)

The convective fluxes pertaining to each of the four NIMO grids are shown in Figure 4. The proper
locations of the fluxes entering or leaving CV, CVx , CVy and CVxy are shown clearly in Figure 4.
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Figure 5. Computational domain of the test problem of inclined flow at angle � with
double step change in passive scalar variable � from 0 to 1.

Interpretation of the above general NIMO equations is not easy. This interpretation will be left
after reducing the above equation to the test problem, which will be shown in Figure 5.

THE FIRST TEST PROBLEM

The first test problem chosen to check the present NIMO scheme is shown in Figure 5. This
oblique flow configuration was also used by Song et al. [8–10] to test their fourth-order schemes.
A similar test problem with a single step change in � was utilized by Raithby [11] and Verma
and Eswaran [12]. The limiting case of the flow configuration of Figure 5 with infinite Peclet
number has an exact analytical solution. In this case, with the absence of diffusion, the value of
� remains constant in the vicinity of the diagonal of the solution domain at a value of 1.0 while
� assumes a value of zero elsewhere, as shown in Figure 5. The variable � is a passive scalar
that has a vanishing source term. The test problem solution domain is (1/ tan�×1) while the
velocity components (u and v) are equal to 1/ tan� and 1.0, respectively. The density is also taken
as constant and equal to 1.0. The width along the x-coordinate, for y=0.0 and �=1.0, is equal
to (0.15/ tan�) while along the y-coordinate, at x=0.0, it is 0.15, as shown in Figure 5. All the
above values are in SI units. The boundary condition is also shown in Figure 5, with �=1.0 in a
districted zone and zero everywhere on the solution domain boundaries. The cell Peclet number
at any node (i, j) is defined as

Pei, j =|ci, j |/di, j (28)

For uniform convection and diffusion fluxes, the cell Peclet number is also uniform; otherwise it
will be grid-node dependent.
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For the test problem of Figure 5, the values of source terms and the fluxes coefficients in
Equations (20), (25)–(27) are

Spi, j =0; Sui, j =0 (29)

ĉi−1, j =ci−1, j ; ĉi, j−1=ci, j−1 (30)

c̃i−1, j =0; c̃i, j−1=0 (31)

ĉi+1, j =0; ĉi, j+1=0 (32)

c̃i+1, j =ci+1, j ; c̃i, j+1=ci, j+1 (33)

Similarly, the values of ĉ and c̃ in the other three control volumes, CVx , CVy and CVxy, can be
obtained. The NIMO finite-difference equations for the test problem can thus be obtained from
Equations (20), (25)–(27) as follows:

[di+1, j +(di−1, j +ci−1, j )+di, j+1+(di, j−1+ci, j−1)]�i, j

=di+1, j�i+1, j +di−1, j�i−1, j +di, j+1�i, j+1+di, j−1�i, j−1

+ci−1, j�
x
i−1, j +ci+1, j (�i, j −�x

i, j )

+ci, j−1�
y
i, j−1+ci, j+1(�i, j −�y

i, j ) (34)

[dxi+1, j +(dxi−1, j +cxi−1, j )+dxi, j+1+(dxi, j−1+cxi, j−1)]�x
i, j

=dxi+1, j�
x
i+1, j +dxi−1, j�

x
i−1, j +dxi, j+1�

x
i, j+1+dxi, j−1�

x
i, j−1

+cxi−1, j�i, j +cxi+1, j (�
x
i, j −�i+1, j )

+cxi, j−1�
xy
i, j−1+cxi, j+1(�

x
i, j −�xy

i, j ) (35)

[dy
i+1, j +(dy

i−1, j +cyi−1, j )+dy
i, j+1+(dy

i, j−1+cyi, j−1)]�y
i, j

=dy
i+1, j�

y
i+1, j +dy

i−1, j�
y
i−1, j +dy

i, j+1�
y
i, j+1+dy

i, j−1�
y
i, j−1

+cyi−1, j�
xy
i−1, j +cyi+1, j (�

y
i, j −�xy

i, j )

+cyi, j−1�i, j +cyi, j+1(�
y
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It should be mentioned here that all the above convective fluxes are positive in the case of the
first test problem shown in Figure 5. This is because all the velocity components in the solution
domain are positive, as shown in Figure 5.

The above equations share one feature with the pure upwind method. This shared feature is,
namely, the left-hand side of the above equations. However, the right-hand sides of the NIMO
equations are essentially different, as it accommodates the outgoing fluxes that are ignored in
the upwind scheme. Each NIMO control volume receives incoming convective fluxes from two
other grids, e.g. the main CV receives two incoming convective fluxes from the x- and y-grids. In
addition to the incoming upwind flux effects, the outgoing fluxes have a unique perturbation. The
outgoing fluxes leave traces behind in the control volumes, as can be seen from the last terms of
Equations (34)–(37) or their general forms above. These traces are the outcome of the differences
between the CV center � and the leaving � values. Positive and negative traces are possible.
While the incoming fluxes of � tend to increase the CV central values, the traces may increase
or decrease � at the center of the control volume of the grid in question. Each grid receives
fluxes from neighboring grids as well as traces resulting from the leaving fluxes of � to the same
neighboring grids, as can be seen from the above set of equations defining the NIMO scheme.
The net gain in each control volume is redistributed by the diffusion mechanism, as dictated
by the NIMO finite-difference equations above. The interpretations of the reduced NIMO finite-
difference equations, reflecting the test problem flow conditions, apply equally to their general
counterparts.

NUMERICAL RESULTS OF THE FIRST TEST PROBLEM

The solution to the test problem is obtained numerically. The TDMA, line-by-line ADA, is adopted
[1]. Equations (34)–(37) are modified at the nodes adjoining the boundary to satisfy the conditions
imposed there. The value of the cell Peclet number is fixed at a very large number to simulate
Pe=∞ of the limiting case of the test problem. A value of Pe>104 is found sufficient enough to
essentially suppress diffusion transport from Equations (34)–(37). The NIMO simulation results
shown in Figure 6 are obtained for a fixed value of Pe=106. The NIMO solution procedure
computes the diffusive fluxes from the given Peclet number and Equation (28). Different grids are
used for the 45◦ oblique flow for the four grids of the NIMO scheme. These grids are one square
grid (59×59), two rectangular grids (59×69 and 59×53) and one non-uniform grid (59×69).
However, a uniform 99×59 grid is utilized for the 30◦ oblique flow. These different meshes are
used to explore the behavior of the NIMO scheme under conditions imposed by square, rectangular
and non-uniform grids. Under-relaxation factors (URF) in the range of 0.3–0.5 for the 45◦ oblique
flow and 0.6 for the 30◦ oblique flow are used for the finite-difference equations of each grid. The
above ranges are convenient to control the conversion processes of the interlinked variables �, �x ,
�y and �xy of the NIMO scheme. The number of iterations and the residual errors of each grid
are discussed below. Figure 6 depicts the results of Song et al. [8–10] for different single-grid
schemes and the present results of the hybrid single-grid and NIMO schemes, for �=45◦. The
exact solution is also shown in Figure 6. The present results of the multi-grid system (NIMO) gave
a numerical solution that exactly fits the analytical solution of the limiting case, when Pe=∞.
No overshooting, undershooting or false diffusion can be detected from the present results. It can
be noted that the NIMO scheme essentially predicts the proper infinite gradient of � at y=0.35
and 0.65, as shown in Figure 6. Moreover, the hybrid scheme, with its dominant false diffusion,
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Figure 6. Profiles of � for previous numerical schemes and NIMO at x=0.5 and Pe=∞
for 59×59 square grid and �=45◦.

gave the least agreement with the analytical solution. The FPFOI, FPTOI and WACEB schemes
are much better than the hybrid scheme. However, FPFOI and FPTOI schemes [8] suffer from
overshooting and undershooting and were unable to predict the infinite (d�/dy) at y=0.35 and
0.65. Although the WACEB scheme [9, 10] results are properly bounded between zero and one,
it still could not predict the infinite gradient of � at y=0.35 and 0.65, as can be seen from
Figure 6.

It seemed interesting to see how NIMO works for values of Peclet number less than infinity.
Numerical results of � are also obtained for the same boundary conditions and using the 45◦
oblique flow. The NIMO scheme profiles of � along the y-axis and at x=0.5 for Pe=10,50,200
and 1000 are shown in Figure 7. The hybrid results for Pe>2 and the analytical solution, for
Pe=∞, were re-plotted in Figure 7 for comparison. It can be seen that as Pe increases, (d�/dy),
at y=0.35 and 0.65, increases. When Pe=1000, (d�/dy) is so steep that it almost reaches
infinity.

The four-grid values of the passive scalar variable, i.e. �, �x , �y and �xy, are plotted in Figure 8.
The profiles of the scalar variable are plotted at x=0.5 for a value of Peclet number equals to 5. The
values of �x and �xy at x=0.5 used in Figure 8 have been obtained by interpolating the converged
final solution due to the shifting of the x- and xy-grids with respect to x=0.5 plane. The four
profiles fall on top of each other indicating that the fields of �, �x , �y and �xy converge together
to essentially the same values. The accuracy of each grid of NIMO is accessed by computing the
sum, over all nodes, of the absolute residual errors. The residual error at a node of each grid is
computed as the imbalance of the pertinent finite-difference equation.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1669–1694
DOI: 10.1002/fld



1682 M. M. M. ABOU-ELLAIL, Y. LI AND T. W. TONG

Figure 7. Profiles of � at x=0.5 for Pe=10, 50, 200 and 1000 and exact solution for
Pe=∞ for 59×59 square grids and �=45◦.

Figure 8. Profiles of �, �x , �y and �xy at x=0.5 for Pe=5 for 59×59 square grids and �=45◦.
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Figure 9. Percentage sum of absolute residual errors of the finite-difference equations of the main, x-, y-
and xy-grids of NIMO for Pe=5 for 59×59 square grids and �=45◦.

The sums of absolute residual errors of the main, x-, y- and xy-grids are plotted as a percentage
of the incoming total fluxes of � versus the number of iterations (n) in Figure 9, for Pe=5 and
URF=0.3. The iterations are stopped when the maximum error of any grid is less than 0.1%.
This condition is satisfied when n=975. The above conversion criterion is also nearly satisfied
near n=600. However, the larger number of iterations is favored to insure complete conversion.
The pattern of changes of the error curves is very interesting. The main grid and xy-grid errors
are similar and decrease monotonically. However, the x-grid and y-grid errors are nearly identical,
as can be seen from Figure 9. They converge faster at the beginning and then suddenly diverge
slightly only to converge to the desired accuracy at 975 iterations. Part of the faster convergence
at the beginning is attributed to the fact that four sweeps per iteration were used for the x- and
y-grids, while only two sweeps per iteration proved to be sufficient for the main and the xy-grids.
It is interesting to note that the four grids interact in such a way that the main and the xy-grids
have no direct link. However, they are linked indirectly through their interactions with both x- and
y-grids. On the other hand, the x- and y-grids establish their indirect link by interacting directly
with both main and xy-grids. The interlinking of the grids explains the pairing of the sum of the
absolute residual errors of the main and xy-grids as well as the pairing the x- and y-grids. It should
be mentioned that the initial error, which is approximately equal to 3.4, arises from the initial
guess. The exact analytical solution to the test problem is used as the initial guess for �, �x , �y

and �xy for all runs reported in the present work.
NIMO and hybrid profiles of � are shown in Figure 10, for Pe=1.0 and x=0.5. In this case, � is

equally transported by convection and diffusion. Figure 10 shows that the hybrid scheme produced
skewed profiles of � along the y-axis, while NIMO properly predicts symmetrical profiles. The
skewed part of � is an outcome of the inevitable false diffusion of the hybrid scheme, which results
from blowing wind along the positive direction of the y-axis. This can also be detected from the
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Figure 10. Profiles of � for NIMO and hybrid schemes at x=0.5 for Pe=1 for 59×59 grids and �=45◦.

Figure 11. NIMO values of � at the edge [(x, y)=(0.5,0.65)] and center of the solution domain
[(x, y)=(0.5,0.5)] versus Peclet number for 59×59 square grids and �=45◦.
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Figure 12. Contour plots of � for unity Peclet number for 59×59 square grids and �=45◦:
(a) hybrid, Pe=1 and (b) NIMO, Pe=1.

hybrid scheme profile of �, for Pe>2.0, which is shown in Figure 7. Similar skewed profiles of
� were also obtained by Song et al. [9–11], for Pe>2.0. It can be seen from Figure 10 that the
central value of � is higher in the case of NIMO. This is because the hybrid scheme suffers from
extra numerical diffusion, as shown in Figure 10.

It is also interesting to determine the minimum Peclet number that produces essentially a flat
profile of � along the y-axis for 0.35<y<0.65. This is achieved in Figure 11 by plotting the value
of � along the edge and center of the diagonal edge versus Pe. A value of 104 is just sufficient
for Pe to produce nearly diffusion-free results.

The � contours that produced Figure 11 are shown in Figure 12. The skewed � profile of
the hybrid scheme along the y-coordinate direction is also obvious from Figure 12(a). However,
the hybrid scheme contours appear to be nearly symmetrical around the diagonal of the solution
domain, as this is the true flow direction. Moreover, the NIMO results indicate that � is more
contained inside the zone bounded by y=0.35 and 0.65, as can be seen from Figure 12(b).

More contours are plotted in Figure 13. The additional NIMO contours are for Pe=10, 50, 200
and 1000. Figure 13(a) shows hybrid scheme � contours for Pe>2.0. The hybrid contours show
that � remains close to unity in a very small area next to the inlet section where � assumes a
value of 1.0. However, the NIMO contours show that the area where � remains uncontaminated
increases as the Peclet number increases. Finally at Pe=103, most of the core along the diagonal
of the solution domain is filled with unity � fluid, as can be seen from Figure 13(e). Moreover,
the widths of the narrow strips, bounded by �=0.99 and 0.01, that surround the diagonal core
decrease as Peclet number increases. These narrow strips become nearly nonexistent as the Peclet
number increases beyond 103. In order to find out how much NIMO is dependent on the boundary
conditions, along the exit sections of the solution domain, a few computer runs were performed.
These runs had zero � gradients at the exit section instead of the fixed-�-value boundary condition.
These runs, although not reported here, showed that the NIMO scheme is not sensitive to this
change in boundary condition for the flow configuration of Figure 5 except for the nodes very
near to the exit boundary of the solution domain. For these nodes, insignificant differences of the
order of ±0.1%, between zero-gradient and fixed-value boundary conditions, were encountered.
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Figure 13. Contour plots of � for hybrid scheme (Pe>2) and NIMO system (59×59
square grids, �=45◦ and Pe=10, 50, 200 and 103): (a) hybrid, Pe>2; (b) NIMO, Pe=10;

(c) NIMO, Pe=50; (d) NIMO, Pe=200; and (e) NIMO, Pe=103.
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Figure 14. Profiles of � at x=0.5, for different grid dimensions and geometries, for Peclet
numbers along the x-axis equal to 50 and �=45◦.

In order to check the consistency of the NIMO scheme, a number of meshes were used
to compute the oblique flow of Figure 5, for �=45◦. All the grids have 59 nodes along the
x-coordinate, while 53,59 and 69 nodes are used along the y-coordinate. One of these grids
is non-uniform (59×69), whereas the other three are uniform (59×53, 59×59 and 59×69).
The scalar variable profiles, along the x=0.5 plane, are shown in Figures 14 and 15, for two
nominal values of the Peclet number, namely 50.0 and 1000.0. Only the (59×59) square grid has
uniform Peclet number. However, the rectangular uniform grids have Peclet number values along
the y-axis higher or lower than the nominal value along the x-axis. This is because �x does not
equal �y for the rectangular grids, while the fluid physical properties are uniform and u=v for
the 45◦ flow. Moreover, the non-uniform grid has Peclet numbers that are space dependent. For a
nominal Peclet number of 50.0, the profiles of � at x=0.5 for the above-mentioned grid dimensions
are in good agreement with each other, as shown in Figure 14. The minor differences between
them arise from the non-uniformity of the Peclet number of the rectangular and non-uniform grids,
as can be seen from Figure 14.

The profiles of � for different grid geometries and dimensions are shown in Figure 15, for a
nominal Peclet number of 1000.0 and �=45◦. The (59×69) non-uniform grid is uniform along
the x-coordinate and non-uniform along the y direction. The (59×69) grid contracts along the
y-coordinate from the outer boundaries towards the center where y=0.5. For this grid, the ratio
of the maximum increment to the minimum increment along the y-coordinate is 4.5. The profiles
essentially capture the analytical solution for infinite Peclet number and �=45◦, although they were
computed for different grid geometries and dimensions. It can be concluded that irrespective of the
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Figure 15. Profiles of � at x=0.5, for uniform and non-uniform different grid dimensions, for Peclet
numbers along the x-axis equal to 1000 and �=45◦.

Figure 16. Profiles of � at x=0.5/ tan�, for 99×59 grids, for Peclet numbers along the
y-axis equal to 1000 and �=30◦.
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dimensions or geometry of the computational grid, the NIMO scheme is capable of computing the
exact solution. However, the skewed upstream-differencing scheme of Raithby [11] can capture
the exact solution only for square grids where the diagonals of the computational cells are parallel
and normal to the flow direction.

Another test is introduced in Figure 16 for an angle of inclination of 30◦. In this case, the
oblique flow passes diagonally through a rectangular solution domain. The distance of the solution
domain and the velocity component along the x-axis are approximately equal to 1.73. The grid
used for the profiles in Figure 16 has dimensions of 99×59. The Peclet numbers along the x-
and y-axes are 1730 and 1000, respectively. Here also, none of the computational cell diagonals
is parallel or normal to the flow direction. However, the profile of � captures the exact analytical
solution for infinite Peclet numbers, as can be seen from Figure 16.

THE SECOND TEST PROBLEM

The second test problem is chosen in the cylindrical-polar domain. It is chosen to check the
accuracy and applicability of the NIMO numerical scheme in coordinates with curvature. The
configuration is that of a rotating radial flow in an annular sector. The velocity field is prescribed
as shown in Figure 17. The tangential velocity u is taken as uniform and is equal to unity,
while the radial velocity v is inversely proportional to the radial distance r . This velocity config-
uration satisfies the mass continuity of the constant-density rotating radial flow in an annular
sector.

Figure 17. Cylindrical-polar computational domain of the test problem of rotating radial flow in an annular
sector with a single step change in passive scalar variable � from 0 to 1.
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Figure 18. Velocity vector field for rotating radial flow in an annular sector, showing the boundary curve
between regions of �=1 and 0 in r–� plane, for infinite Peclet number.

The annular sector is bounded by r0=1.0, r1=2.0 and �=0.0, �=1.0 along the radial and
tangential directions, respectively. The passive scalar variable � is equal to 0.0 and 1.0 at the
inlet two sections defined by �=0.0 and by r =1.0. For infinite Peclet numbers, the exit sections
have values of � equals to 1.0 and 0.0 for �=1.0 and r =2.0, respectively. For this case the
exact solution for the streamline that divides the sector into a �=0.0 zone and another zone with
�=1.0 is shown in Figure 18. The streamline, which runs from point (1,0) to point (2,1), is
shown in Figure 18, superimposed on the prescribed velocity vector field. The velocity vectors
vary in direction and magnitude, which is a good test to the extent of the accuracy of the NIMO
numerical scheme in conditions where false diffusion is not uncommon. Equations (20), (25), (26)
and (27) are applicable to cylindrical-polar coordinate 2D flows. The superscripts x , y and xy are
replaced by �, r and r�, while the distances between the central node and the neighboring nodes
become r�� and �r , along the tangential and radial directions, respectively. For this test problem,
a 59×59 uniform grid is superimposed on the solution domain of an annular sector. The distances
along the tangential (angular) direction, which are involved in the NIMO equations, increase in
the radial direction, although the grid itself is uniform.

NUMERICAL RESULTS OF THE SECOND TEST PROBLEM

The numerical solution to the second test problem is also obtained with the TDMA, line-by-line
ADA. The value of 104 for the cell Peclet number at point (r,�)=(1,0) is found sufficient to
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Figure 19. Angular profiles of �, at r =1.5, for Peclet numbers ranging from 5000 to 10 000 (angular)
and 10 000 to 20 000 (radial), using 59×59 cylindrical-polar grid.

produce nearly diffusion-free profiles of the passive scalar variable. The URF is taken as 0.5,
which produced converged solutions after 500 iterations with an error less than 0.1%. The local
cell Peclet number along the tangential (angular) direction increases from 104 to 2×104, while
along the radial direction it decreases from 104 to 5×103. This is an outcome of the variations
along the radial direction of the radial velocity and the tangential distance.

Figure 19 shows the angular profiles of the passive scalar variable � computed numerically
and the corresponding step function exact solution. The exact solution is obtained for the limiting
case of infinite Peclet number. The agreement between the two profiles is excellent. The main
differences occur in a very narrow angular zone, where � changes abruptly from 1.0 to 0.0.
However, outside this narrow zone, � is properly computed as zero on one side and unity on the
other side.

Similarly, the radial profiles of the passive scalar are shown in Figure 20. The NIMO results
show an excellent agreement with the exact solution of a step function change in the passive
scalar variable. The gradient of the passive scalar along the radial direction (��/�r) is higher than
that along the tangential direction (��/r��) as can be seen from Figures 19 and 20. This is an
outcome of the higher mean value of the Peclet number along the radial direction relative to the
corresponding value along the tangential direction.

Figure 21 shows the open contours of � in the rotating radial flow in an annular sector. A thin
curved strip, where � varies from 0.001 to 0.999, is computed using the NIMO scheme. Outside
this narrow strip the passive scalar variable changes abruptly from 0.0 to 1.0. It is interesting
to note the resemblance between the shape of the narrow strip and the exact solution curve that
divides the annular sectors into �=0.0 and 1.0 zones (Figure 18).
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Figure 20. Profiles of �, at �=0.5 rad, for Peclet numbers ranging from 5000 to 10 000 (angular) and
10 000 to 20 000 (radial), using 59×59 cylindrical-polar grid.

Figure 21. Open contours of the passive scalar variable � for a 59×59 r–� grid.
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CONCLUSIONS

The present work describes a novel numerical procedure. The new scheme is a non-upwind,
interconnected, multi-grid, overlapping (NIMO) finite-difference procedure. The NIMO numerical
procedure is free from any interpolations of convective fluxes that normally produce high levels of
false diffusion in most known finite-difference schemes. The NIMO system involves four grids in
2D flows. The four grids are located in space such that each grid is displaced midway with respect
to one of the remaining grids. The main grid and the xy-grid interconnect indirectly through the
x-grid and the y-grid and vice versa. Similar interconnection between the four NIMO grids is valid
in the cylindrical-polar solution domain. The percentage sum of the absolute residual errors of the
main and xy-grids behave in the same fashion, which is different from the similar trend of the other
two grids. The NIMO scheme is applied to two test problems. The first test problem is the oblique
flow in the Cartesian coordinates, while the second test problem is represented by a rotating radial
flow in an annular sector. The NIMO finite-difference scheme can produce numerical profiles of �
that capture the analytical solution of the test problem for 45 and 30◦ oblique flows for high Peclet
numbers. Moreover, NIMO can essentially capture the analytical solution of the two test problems
for square, rectangular and non-uniform grids. The second test problem is also computed with
a very high accuracy, which confirms the validity of the NIMO scheme to the cylindrical-polar
coordinates as well as to the Cartesian coordinates. Most of the single-grid numerical procedures
utilizing rectangular or non-uniform grids could not reach that level of accuracy due to false
diffusion, overshooting or undershooting. This could be concluded from the comparison of the data
of these schemes with the corresponding present numerical results. The NIMO finite-difference
equations contain convective terms that slightly resemble the upwind schemes. However, unlike
the upwind scheme, the incoming convective fluxes to a particular grid are supplied by two of the
remaining three grids of NIMO. A new feature emerges that allows the outgoing fluxes to leave
behind positive or negative traces in a particular grid control volume, which is completely ignored
in the upwind scheme. These outgoing convective fluxes constitute the incoming convective fluxes
to two of the remaining three grids of NIMO. Results obtained for different values of the Peclet
number showed that the diagonal core of the test problem is surrounded by narrow strips bounded
by �=0.99 and 10−2. These narrow strips become essentially nonexistent as the Peclet number is
increased to 103. The converged numerical solutions of the four NIMO grids for a passive scalar
variable at a fixed value of the Peclet number are consistent and identical.

NOMENCLATURE

A surface area of control volume
a finite-difference coefficients
c convective fluxes
ĉ, c̃ modified convective fluxes
d diffusive fluxes
n number of iterations
Pe Peclet number
r radial direction
Su, Sp source term coefficients in linear form
u velocity component along the x or tangential direction
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uk fluid velocity along coordinate direction xk
v velocity component along the y or radial direction
xk coordinate direction
�� molecular diffusivity of �
�x distance between central node and neighboring node
� tangential direction or angle of inclination
� density
� scalar variable

Subscripts

E, W east and west directions
p value at the center of control volume
S, N south and north directions
i, j grid-node indices

Superscripts

x x-grid
y y-grid
xy xy-grid
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